
c© 2012 Dushyant Rao

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Curveslam: Utilizing Higher Level Structure In Stereo Vision-Based
Navigation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois at Urbana-Champaign,Urbana,IL, 61802

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Existing approaches to visual Simultaneous Localization and Mapping (SLAM) typically utilize points as
visual feature primitives to represent landmarks in the environment. Since these techniques mostly use
image points from a standard feature point detector, they do not explicitly map objects or regions of
interest. Further, previous SLAM techniques that propose the use of higher level structures often place
constraints on the environment, such as requiring orthogonal lines and planes. Our work is motivated by
the need for different SLAM techniques in path and riverine settings, where feature points can be scarce
and may not adequately represent the environment. Accordingly, the proposed approach uses B?ezier
polynomial curves as stereo vision primitives and offers a novel SLAM formulation to update the curve
parameters and vehicle pose. This method eliminates the need for point-based stereo matching, with an
optimization procedure to directly extract the curve information in the world frame from noisy edge
measurements. Further, the proposed algorithm enables navigation with fewer feature states than most
point-based techniques, and is able to produce a map which only provides detail in key areas. Results in
simulation and with vision data validate that the proposed method can be effective in estimating the 6DOF
pose of the stereo camera and can produce structured, uncluttered maps. Monte Carlo simulations of the
algorithm are also provided to analyze its consistency.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

60

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CURVESLAM: UTILIZING HIGHER LEVEL STRUCTURE IN STEREO
VISION-BASED NAVIGATION

BY

DUSHYANT RAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Advisers:

Assistant Professor Soon-Jo Chung and Professor Seth Hutchinson

ABSTRACT

Existing approaches to visual Simultaneous Localization and Mapping (SLAM)
typically utilize points as visual feature primitives to represent landmarks in the
environment. Since these techniques mostly use image points from a standard
feature point detector, they do not explicitly map objects or regions of interest.
Further, previous SLAM techniques that propose the use of higher level structures
often place constraints on the environment, such as requiring orthogonal lines and
planes. Our work is motivated by the need for different SLAM techniques in path
and riverine settings, where feature points can be scarce and may not adequately
represent the environment. Accordingly, the proposed approach uses Bézier poly-
nomial curves as stereo vision primitives and offers a novel SLAM formulation to
update the curve parameters and vehicle pose. This method eliminates the need
for point-based stereo matching, with an optimization procedure to directly ex-
tract the curve information in the world frame from noisy edge measurements.
Further, the proposed algorithm enables navigation with fewer feature states than
most point-based techniques, and is able to produce a map which only provides
detail in key areas. Results in simulation and with vision data validate that the
proposed method can be effective in estimating the 6DOF pose of the stereo cam-
era, and can produce structured, uncluttered maps. Monte Carlo simulations of
the algorithm are also provided to analyze its consistency.

ii

To family, friends, and everyone else who has helped me over the years. To my

advisors and peers, who have contributed to every bit of this thesis.

iii

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research (ONR) under Award
No. N00014-11-1-0088. This thesis benefitted from stimulating discussions and
technical support of Jonathan Yong, Junho Yang, and Ashwin Dani.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF ABBREVIATIONS . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Related Work . 2

CHAPTER 2 CURVESLAM ALGORITHM OVERVIEW 7

CHAPTER 3 CURVE PARAMETRIZATION AND GEOMETRY 10
3.1 Epipolar Geometry of Curves . 10
3.2 Bézier Curve Characteristics . 13
3.3 Camera Projection Model . 15

CHAPTER 4 CURVE FITTING . 18
4.1 Edge Detection and Grouping 18
4.2 Nonlinear model fitting . 19
4.3 Jacobian Derivation . 20

CHAPTER 5 SLAM FORMULATION 26
5.1 Curve Data Association . 26
5.2 State Model . 30
5.3 Vehicle Process Model . 31
5.4 Observation Model . 32
5.5 Extended Kalman Filtering . 34

CHAPTER 6 RESULTS . 38
6.1 Vision Results . 38
6.2 Simulation Results . 40

CHAPTER 7 CONCLUSIONS . 47
7.1 Future Work . 47

REFERENCES . 49

v

LIST OF FIGURES

2.1 Flow diagram of the proposed CurveSLAM algorithm 8

3.1 Planar Polynomial Curve projected to Stereo Images 11
3.2 A sample cubic Bézier curve and its associated control points . . . 14
3.3 Graphical depiction of stereo rig and ground plane, with frames

of reference shown . 16

4.1 Result of Canny detection and edge grouping to extract path
edge curves . 19

5.1 Updating map curves (left), and adding new curves to the map
(right) based on a measured curve at one timestep. The mea-
sured curve is shown in red, and the map curves are in blue
and black. 27

5.2 Early frame (left) and current frame (right), with measured
curve endpoints for each frame in red and map curve endpoints
in blue . 28

5.3 Recursive definition of Bézier curves 29

6.1 Vision results on three paths, with varying length and difficulty . . 39
6.2 Typical edge pixels in real environment (left), and typical edge

pixels in simulation (right) . 40
6.3 Simulation results for map 1: estimated and true map (top),

position error (center), and orientation error (bottom). 43
6.4 Simulation results for map 2: estimated and true map (top),

position error (center), and orientation error (bottom). 44
6.5 Simulation results for map 3: estimated and true map (top),

position error (center), and orientation error (bottom). 45
6.6 Monte Carlo consistency results for maps 1 to 3 (top to bot-

tom), showing the average NEES over 50 runs 46

vi

LIST OF ABBREVIATIONS

BA Bundle Adjustment

DOF Degrees of Freedom

EKF Extended Kalman Filter

GPS Global Positioning System

IDP Inverse Depth Parametrization

KF Kalman Filter

LIDAR Light Detection and Ranging

MAV Micro Aerial Vehicle

RADAR Radio Detection and Ranging

SFM Structure From Motion

SLAM Simultaneous Localization and Mapping

VO Visual Odometry

vii

CHAPTER 1

INTRODUCTION

A necessary capability for any autonomous vehicle is to progressively construct a
map of its surroundings whilst localizing itself within the map, a real-time process
known as the SLAM problem [1][2]. GPS has long been used to localize aerial
vehicles in various applications, but may not always be available in remote areas,
in outdoor environments that have heavy forest canopies, or even in some indoor
environments. There exist a variety of alternative sensors that can be used to deter-
mine the range and bearing to landmarks in the environment, including laser range
finders, RADAR / LIDAR systems, ultrasonic sensors, and stereo and monocular
cameras. Nevertheless, favorable size, mass, and power consumption qualities of
lightweight cameras make them very attractive for autonomous navigation.

A great deal of past work has focused on visual SLAM. For example, the orig-
inal MonoSLAM algorithm [3] was able to estimate pose of a monocular camera
and map a room, and indeed, our previous work [4][5][6] achieved navigation
and mapping using a single camera in an orthogonal indoor environment. How-
ever, like most SLAM techniques, such prior works utilize points as landmarks,
an approach with a number of drawbacks:

1. The landmarks represent image points, and may have no physical signifi-
cance in the environment

2. There is no exploitation of higher level structure in the environment

3. Methods that can provide rich maps [7] require a much larger state space,
and combinatorial data association is considerably more difficult.

From the perspective of robot motion planning, guidance, and control, it is de-
sirable for the produced map to have some structure and for the landmarks to rep-
resent meaningful physical objects. Otherwise, there is no indication of whether
landmarks represent obstacles, traversable regions, or points of interest in the en-
vironment.

1

Before presenting the curve-based SLAM algorithm, we begin by examining
related work in Visual SLAM.

1.1 Related Work

Monocular vision is a difficult problem, in part because the projective geometry
means that depth of a landmark along the axis of the camera (i.e., distance from the
camera) cannot be estimated from a single measurement. Early research solved
this problem by initializing the landmark after multiple measurements were made
[3], while more recent approaches use an Inverse Depth Parametrization (IDP) to
initialize the landmark after a single observation [8]. Other monocular approaches
utilize the ground planar constraint of different environments to immediately ini-
tialize landmarks [4][6], but the methods still require a height measurement from
an altimeter sensor. Another technique [9] allows the MonoSLAM method to be
applied to larger scale environments, by starting new submaps once the original
map grows to an unmanageable size, and then stitching the local maps together
into a global map using the Hierarchal SLAM algorithm [10]. Their results show
a successful loop closure in a dynamic urban environment, producing an accurate
global map.

Stereo vision-based methods allow immediate initialization of landmarks, but
can produce erroneous estimates for distant landmarks [11]. This can be improved
by modelling the measurements as separate monocular measurements rather than
a single stereo frame [12]. Visual odometry techniques have been widely ex-
plored, but can suffer from considerable drift, analogous to the drift of standard
vehicle odometry. Recent research looks instead to combine visual odometry with
monocular SLAM [13], using the “pose prior” obtained from visual odometry
to strengthen the Visual SLAM result. Structure from Motion (SFM) techniques
such as Bundle Adjustment (BA), can produce a very high level of accuracy, but
often at greater computation expense. However, there has been recent research al-
lowing for a real-time implementation using a sliding window bundle adjustment
[14], and further work using the random sample consensus (RANSAC) algorithm
and and EKF to optimize over a sliding window [15].

However, the algorithms outlined thus far, both mono-based and stereo-based,
use feature points as landmarks. Consequently, they are susceptible to the draw-
backs outlined earlier, and it is beneficial to consider using an approach that rec-

2

ognizes structure in the environment.

1.1.1 Higher Level Structure in Vision and SLAM

A number of related works have attempted to discover or utilize higher level struc-
ture in SLAM. Some of these assume an orthogonal environment and utilize lines
or planes to obtain the SLAM estimate [16][17][18]. However, the work in [16]
relies on dense landmark sets (such as a laser scan dataset) and only landmarks
that are collinear or coplanar can be used in the SLAM pose estimate, as is the
case in [17]. The approach outlined in [18] allows for higher structure in the en-
vironment using line segments that can be initialized immediately (analogous to
IDP for points), but still requires a larger state space than would be needed for
a curve-based approach. Another related work [19] parametrizes 3D lines using
Plücker coordinates, suited to a pinhole camera projection model, and uses these
in an EKF-based SLAM framework, while the work of [20] utilizes the orthogo-
nality assumption of the indoor environment to map lines on the floor.

Some past works also combine object recognition with visual SLAM [21][22],
incorporating objects of interest into the map. However, the work in [21] utilizes
an IR scanner as well, while [22] uses orthogonal household objects rather than
a more freeform primitive. In both works, the estimation algorithm is still point-
based, and the object recognition algorithm is only used to cluster points and
improve data association.

The use of curve structures in vision has also been considered in prior research.
A number of early works propose the use of algebraic curve primitives in stereo
vision rather than points [23][24], deriving closed form implicit expressions for
an algebraic curve in Cartesian space given its projection in multiple images.
However, while algebraic curves can more diversely describe a range of image
shapes, they are difficult to use computationally since only certain polynomial va-
rieties admit a parametric representation. Another work [25] also examines the
multi-view relationships for non-algebraic curves, lines and conic sections, while
a more recent approach utilizes an iterative technique with a Non-Uniform Ra-
tional B-Spline (NURBS) model to perform optimal stereo reconstruction of 3D
curves [26]. A similar technique reconstructs smooth space curves with images
of objects from different views [27], but assumes that the relative motion between
cameras is known, rendering it unsuitable for SLAM. Another SFM-style algo-

3

rithm performs multi-view reconstruction of a set of curves, and impressive results
are presented with a few different image sequences, including top-down imagery
from an aerial vehicle [28]. However, as a batch update algorithm which requires
the full sequence of images, it cannot be directly applied to real-time robot naviga-
tion. More significantly, it only considers curves that are fully observed in several
image frames; for SFM this may be reasonable, but in SLAM, partial curves are
frequently observed and need to be incorporated as measurements. One approach
[29] uses basis curves in the application of road lane detection, but only considers
the scenario of a ground vehicle travelling on a road with marked lanes, whereas
a more general method in 6DOF is desirable for our application.

The most relevant prior work is that of Pedraza et al. [30][31], in which B-
splines are applied to SLAM by using the control points of the curves as a de-
scription of the environment. They propose an EKF-SLAM based framework for
navigation, with excellent results in multiple indoor environments. However, the
algorithm is applied to a laser-based SLAM system, and the observation model
utilizes point measurements in 3D position co-ordinates. Further work improves
the observation covariance of the algorithm and yields more consistent results
with a spline-based observation model [32].

Our proposed algorithm looks to build on their work in a number of ways.
Firstly, our algorithm generalizes their approach to 6DOF, allowing for application
in non-planar vehicles. Secondly, our application to Visual SLAM means that the
algorithm could operate in a range of environments where laser ranging finding
returns may not be available, such as in outdoor terrain. In doing so, we also
provide a novel measurement parametrization that avoids feature points altogether
in visual SLAM: the optimal curve parameters are found from a stereo image pair,
and these curve parameters are used as the measurements in SLAM. Lastly, while
Pedraza et al. utilize odometry in their approach (a reasonable assumption for a
ground vehicle), our proposed technique utilizes vision as the only sensory input,
thereby ensuring it can be used onboard any robotic platform, or indeed, a simple
stereo camera rig.

1.1.2 Summary and Contributions

A large amount of related work exists in visual navigation and SLAM, but in gen-
eral, most approaches utilize point features without regard to the structure of the

4

environment. Clearly, there are drawbacks to utilizing point-based methods in vi-
sual SLAM, and these characteristics limit the efficacy of a SLAM algorithm. By
parametrizing landmarks in a way that explicitly considers higher level structures,
it will be possible to produce structured maps with more meaningful landmarks,
which could provide more useful information to the vehicle to aid path planning
and control.

A number of past works have looked into utilizing higher level structure for
SLAM, but most of these place orthogonality constraints on the environment or
still utilize points, clustering them for object classification. A few works have
looked into curve structures in vision, but mostly do not consider their applica-
tion to SLAM. The work of [31] [32] develops a spline-based SLAM framework,
but this is only for application to LIDAR-based SLAM for a planar vehicle, and
vehicle odometry is also used.

The work presented in this thesis uses a Bézier curve-based landmark parametriza-
tion in a stereo vision-based SLAM framework. The proposed algorithm aims
to achieve accurate localization and structured mapping by using cubic Bezier
polynomial curves [33] as stereo vision primitives instead of feature points. This
results in detailed continuous curves mapped through considerably fewer land-
mark states. Further, instead of explicitly matching points between left and right
images, stereo matching is accomplished implicitly through a nonlinear function-
fitting process.

To our knowledge, there exists no visual SLAM algorithm utilizing curve prim-
itives. Our algorithm can perform localization and compactly represent the map of
the environment as a set of curves. However, in contrast with [31] [29], our algo-
rithm provides 6DOF estimation and can produce results in environments where
laser-based techniques would fail. In particular, the novel contributions of the
present thesis can be stated as follows:

• We propose a novel method to extract curve parameters, such as control
points, from a stereo image pair, without conventional point-based stereo
matching. This approach allows us to obtain an absolute measurement of
roll, pitch, and height on each stereo frame.

• We propose a novel SLAM formulation utilizing curve structures as land-
marks. By using curve structures, we are able to estimate the full 6DOF
pose with much fewer landmarks than typical feature point-based methods,
and can still produce a structured map, without odometry or use of any sen-

5

sor other than a camera rig. This is the first such method in existence in
visual SLAM.

The remainder of this thesis is organized as follows. Chapter 2 provides a brief
overview of the CurveSLAM algorithm; Chapter 3 details the parametrization of
cubic Bézier curves and epipolar geometry of curves; Chapter 4 outlines the pro-
cedure for extracting curve parameters from stereo images; Chapter 5 derives the
EKF-based SLAM formulation and data association method; Chapter 6 presents
the simulation and experimental results; and Chapter 7 contains the conclusion
and suggestions for ongoing and future work.

6

CHAPTER 2

CURVESLAM ALGORITHM OVERVIEW

The proposed approach utilizes planar cubic Bézier curves to represent each curve
in the world frame. Each observed curve is projected to the left and right images
as a series of detected edge points.

Instead of matching feature points between the left and right images, we run a
nonlinear curve fitting algorithm to directly determine the Bézier curve parameters
(refer to Chapter 3) in the world frame that best correspond to the projected curve
point pixels. In this way, the need for stereo matching is eradicated, and the
environment can be represented simply by a set of curves.

We also exploit the fact that the curves of interest are constrained to the ground
plane. By imposing this planar constraint, it is possible to not only extract the
curve parameters, but also a measurement of the height (z) from the camera to
the ground plane, and the absolute orientation (pitch and roll) of the camera with
respect to the ground plane, as will be explained in more detail in Chapter 4.

This assumption is not unrealistic; most environments have a ground that is
close to planar, and results from this proposed algorithm as well as our previous
work [6] demonstrate that variations in this planarity have a minimal impact on
the effectiveness of the algorithm.

The process can be split into Curve Fitting (Chapter 4) and SLAM (Chapter
5) and is shown in Figure 2.1. The steps are summarized in pseudocode form in
Algorithm 1, and are as follows:

1. We begin with a time-synchronized stereo image frame, perform edge de-
tection to extract the curve edge points, and group the edge points into dif-
ferent curves.

2. The grouped edge points are then passed into a nonlinear Levenberg-Marquardt
model fitting algorithm, which outputs the curve control points as well as
pitch, roll, and height. The algorithm determines the set of parameters that

7

Edge
Detection

Grouping

Curve Fitting
Stereo
Images

Edge
Points

Grouped
Points

Curve Fitting

Curve
parameters

Out-of-
plane pose

Data
Association

Curve
Splitting

SLAM
Measured

curves

Data
Association
Parameters

Matched
Curves

SLAM
6DOF pose

Map curves

𝑧, 𝜃, 𝜙

Out-of-
plane pose

𝑧, 𝜃, 𝜙

Figure 2.1: Flow diagram of the proposed CurveSLAM algorithm

minimize the pixel reprojection error when compared to the edge point mea-
surements.

3. The curve parameters are considered as measurements for the SLAM proce-
dure. First, data association is performed, determining the correspondence
between the measured curves and the existing map curves.

4. Next, a curve splitting algorithm is applied to match the measured curves
with segments of existing map curves.

5. The map is updated and the remaining pose variables (yaw, x, and y) are
determined by using an EKF-based SLAM formulation.

This process constitutes one iterative loop of the proposed novel CurveSLAM
algorithm, and is repeated on every successive stereo image frame. From each of
these iterations, we can maintain the full 6DOF pose of the vehicle and the map
curves representing the environment.

8

Algorithm 1 CurveSLAM
1: while New stereo image frame available do
2: Run edge detection and group edge points into M different curves
3: y := grouped edge points
4: pi := control points of ith measured curve
5: {z, φ, θ} := {height, roll, pitch}
6: β :=

[
pT1 , ..., pTM , z, φ, θ

]T
7: while ||δ|| > ε do
8: predict edge points y from parameters β with y = f(β)

9: J := ∂f(β)
∂β

10: δ :=
(
JTJ + λ diag

(
JTJ

))−1
JT (y − f(β))

11: β ← β + δ
12: end while
13: Perform EKF prediction for robot pose xr
14: Find correspondences between M measured curves pi, and N existing

map curves xj , with i ∈ {0, 1, ...,M} and j ∈ {0, 1, ..., N}
15: Split curves into segments for direct correspondence
16: Add new states and apply EKF update to state vector x =

[xr, x1, ..., xN]T

17: end while

9

CHAPTER 3

CURVE PARAMETRIZATION AND
GEOMETRY

This chapter outlines the epipolar geometry of curves and introduces the Bézier
curve parametrization used.

For this research, we utilize a calibrated stereo camera rig, and assume that
both cameras have the same orientation (i.e., zero relative rotation), separated by
a fixed baseline d.

3.1 Epipolar Geometry of Curves

For a calibrated stereo camera pair, a matched stereo measurement of a single
point is enough to fully define the 3D point in the body frame of the camera. Three
stereo matched points are enough to fully define a plane, with the assumption that
the points are not collinear.

Similarly, a single planar curve measured in both left and right images is fully
defined with respect to the body frame of the stereo camera rig. Consider the ex-
ample of a planar polynomial curve C in 3D space, which projects to two different
curves CL and CR in each of the stereo images (see Figure 3.1). In the inverse
projective mapping, a curve in a single image represents a ruled surface projected
out from the optical center O of the camera. If we have a second image of the
same curve, the curve in 3D space is the intersection of the ruled surfaces pro-
jected from both images (Figure 3.1). Therefore, if the curve is observed in both
images, we can uniquely determine the parameters of the curve, as well as the per-
pendicular distance to the plane containing the curve and the relative orientation
between the camera and the plane. Since the curves considered in this thesis are
all planar (on the ground plane), each frame gives us a measurement of height,
pitch and roll, in addition to the control parameters defining the curve. Naturally,
stereo vision is especially susceptible to error in the case of distant objects, so care
must be taken to avoid curve features at a large distance.

10

𝑪

𝑪𝑹 𝑪𝑳

𝑶𝑹
𝑶𝑳

Ground

plane

Figure 3.1: Planar Polynomial Curve projected to Stereo Images

We can prove, under certain assumptions, that the preimage of two image curves
is itself a curve in world co-ordinates. This proof is outlined below.

3.1.1 Proof of Curve Reconstruction

For this proof, we make the assumption that for a specific curve in <3, the map
f : <3 → <2 projecting the curve to an image is an isomorphism. Practically, this
assumption is not restrictive; it only implies that the curve is “fully observed” in
both images (i.e., a curve should not lose information and appear as a point or line
when projected to the image). In any case, such an assumption is necessary for
visual curve-based SLAM.
Background:
For a smooth map between manifolds given by f : X → Y , y ∈ Y is a regular

value of f if ∀x ∈ f−1(y), dfx : TxX → TyY is surjective. Here, TxX and TyY
are the tangent spaces of X and Y at points x and y.

The Preimage Theorem: If f : X → Y is a smooth map, and y ∈ Y is a reg-
ular value of f , then M = {x : x ∈ f−1(y)} is a submanifold of X , and the
codimension of M in X is equal to the dimension of Y .
Proposition: Given a stereo image frame, and a curve observed in each image,

11

the preimage is itself a curve in the world frame.
Proof:
We can define a curve in the left image as fl(ul, vl) = 0. Under normalized
perspective projection, ul = x/z and vl = y/z. So, we can express this curve as
fl(x/z, y/z) = 0, fl : <3 → <1.

Then, the inverse image of 0 is given by:

Ml = {(x, y, z) ∈ <3 | fl(x/z, y/z) = 0}

and using the Preimage Theorem, Ml is a manifold in <3 with codimension 1.
Thus, Ml is a 2-manifold, which can be represented in implicit form by the set:

Ml = {(x, y, z) ∈ <3 | Fl(x, y, z) = 0}

Similarly, if we define the curve in the right image as fr(ur, vr) = 0, using a
similar argument the inverse image of 0 in the right image is also a 2-manifold
given by:

Mr = {(x, y, z) ∈ <3 | Fr(x, y, z) = 0}

Consider now the function F : <3 → <2 given by

F (x, y, z) =

[
Fl(x, y, z)

Fr(x, y, z)

]

The inverse image M of the stereo image curves is the intersection of the two
surfaces Ml and Mr, or the set of points for which Fl = Fr = 0:

M = {(x, y, z) ∈ <3 | F (x, y, z) = 0]

Since in this case, F : <3 → <2, we can conclude using the Preimage Theorem
that the inverse image of the point [0, 0]T will be a manifold of codimension 2 in
<3 (i.e., a 1-manifold, or a curve).

12

3.2 Bézier Curve Characteristics

In the proposed algorithm, planar cubic Bézier curves are used to represent the
ground planar curves. However, the algorithm itself is scalable to Bézier curves
of any order.

The following properties of Bézier curves [33] make them favorable for this
application:

1. A cubic Bézier curve can be represented by 4 control points or in parametric
form with the position bx(t) and by(t) on the ground plane defined on the
interval t ∈ [0, 1]. The control points define the shape of the curve, which
loosely follows the path between them, as shown in Figure 3.2.

2. Any affine transformation on a Bézier curve is equivalent to an affine trans-
formation on the control points. Perspective projection is not affine, but
for small distances from the camera, it can be approximated as such; this
means that projecting a world curve to the left or right images is approxi-
mately equivalent to mapping the control points to the image planes.

3. The start and end points of the curve are well-defined; that is, unlike an
implicit polynomial representation, the curve is only defined on an interval
of the parameter t. This is a useful attribute, since only finite segments of a
real world curve are observed.

4. The control points of any partial segment of the curve can be recovered by
applying a linear transformation to the control points of the full curve, as
will be shown in Section 5.1.1.

In fact, many of these properties are general to all Non-Uniform Rational B-
Spline (NURBS) curves, but for the curve fitting method, specifying the parametriza-
tion is essential. A specific Bézier curve parametrization also means that the curve
is fully specified with the control points (i.e., without a knot vector or weights) and
the transformation between control points and polynomial coefficients (derived in
the next section) is straightforward.

3.2.1 Notation and Definitions

In the general case of M existing Bézier curves, we will adopt the notation p
(i)
`

with ` ∈ {1, 2, ..., M} and i ∈ {0, 1, 2, 3} to refer to the ith control point of

13

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3
Bezier Curve and Control Points

X

Y

Curve segment
Control Points

Figure 3.2: A sample cubic Bézier curve and its associated control points

the `th curve. We also use the absence of superscript (i) to represent the 4 control
points of the `th curve with the control point vector:

p` =
[
p(0)x , p(1)x , p(2)x , p(3)x , p(0)y , p(1)y , p(2)y , p(3)y

]
`

T
(3.1)

Then, a planar Bézier spline function b(t) which is cubic (n = 3) with a control
point vector p` can be expressed as:

b(t) =

[
bx(t)

by(t)

]
=

n∑
i=0

(
n

i

)
(1− t)n−itip(i)

` , t ∈ [0, 1] (3.2)

By varying t between 0 and 1, any point on the curve can easily be generated
or rendered.

Further, the curve control points can be transformed to a set of parametric poly-
nomial coefficients to express the planar Bézier curve in the form:

b(t) =

[
bx(t)

by(t)

]
=

[
α0 + α1t+ α2t

2 + α3t
3

α4 + α5t+ α6t
2 + α7t

3

]
, t ∈ [0, 1] (3.3)

Rearranging the Bézier expressions, we can find the direct relationship for co-
efficients αj as:

14

αj =


n!

(n− j)!

j∑
i=0

(−1)j+ip
(i)
x

i!(j − i)!
if i < 4

n!

(n− j)!

j∑
i=0

(−1)j+ip
(i)
y

i!(j − i)!
if i ≥ 4

(3.4)

Expressing the coefficients as a vectorα` = [α0, α1, α2, α3, α4, α5, α6, α7]`
T ,

the transformation betweenα` and p` is linear, with Jacobian expressed using ma-
trix A ∈ <4×4:

A : aij =


n!

(n− i)!
(−1)i+j

j!(i− j)!
if j ≤ i

0 if j > i

(3.5)

dα`
dp`

=

[
A 0

0 A

]
(3.6)

The matrix A is repeated because the same transformation has to be applied
separately to both the x and y coordinates of the control points to obtain the in-
dependent parametric polynomial coefficients in x and y. This form will arise
frequently throughout the remainder of this thesis.

3.3 Camera Projection Model

For a Bézier curve being viewed by two cameras, we can easily approximate the
equivalent projected curves in the left and right images by applying the camera
projective transformation to the Bézier control points.

First, we define the frames of reference as follows (see Figure 3.3). The Body
frame fb is used to denote the frame fixed at the center of the stereo head, with
the ~x, ~y, ~z axes following a Forward-Right-Down convention. The Local Ground
frame fg is the projection of the Body frame onto the ground plane. Finally, the
Earth frame fe is fixed as the inertial frame.

In other words, φ, θ and z (the “out-of-plane degrees of freedom”) transform

15

Figure 3.3: Graphical depiction of stereo rig and ground plane, with frames of
reference shown

between the Body and Local ground frames, while x, y and ψ (the “planar degrees
of freedom”) transform between the Local Ground and Earth frames.

This selection of reference frames is natural for this application, because, as
mentioned earlier, each stereo image frame only provides the out-of-plane degrees
of freedom; the in-plane motion cannot be determined from a single frame.

In the defined frames, a point on the ground plane with Local Ground frame
co-ordinates xg = [xg, yg, 0]T can then be mapped to a point in both the left and
right image (ul, vl) and (ur, vr) using the simple transformation:

xb =

xbyb
zb

 = Rgb(φ, θ)
−1(xg − tgb(z)) (3.7)

ul =
fu
xb
zb + cy ur =

fu
xb
zb + cy (3.8)

vl =
fv
xb

(yb +
d

2
) + cx vr =

fv
xb

(yb −
d

2
) + cx

where d is the baseline, fx and fy are the focal lengths in the x and y directions (in
pixels), and cx and cy are the image x and y coordinates of the principal point (in
pixels). Rgb(φ, θ) and tgb(z) represent the rotation matrix and translation vector
to transform a vector between the Body and Local Ground frames:

16

Rgb(φ, θ) =

 cos θ 0 − sin θ

sin θ sinφ cosφ cos θ sinφ

sin θ cosφ − sinφ cos θ cosφ



tgb(z) =

0

0

z

 (3.9)

Using the second property in Section 3.2, a planar Bézier curve in the ground
frame maps to another Bézier curve in both the left and right images, and the
control points of the projected curves in the left and right images can be found
by applying (3.7) and (3.8) to the control points of the curve in the Local Ground
frame.

17

CHAPTER 4

CURVE FITTING

This chapter outlines the process of extracting the curve control points and out-
of-plane pose parameters from each stereo image pair.

4.1 Edge Detection and Grouping

The first step for each stereo frame is to obtain edge points in both images corre-
sponding to the curves on the ground plane. Then, once an edge detector has been
applied, it is necessary to minimize the amount of noise pixels (corresponding to
irrelevant edges) and group edge points into different curves.

For the purposes of this thesis, we are interested in mapping path environments,
with map curves corresponding to the left and right edges of the path. Accord-
ingly, we extract the edge points as follows. First, a Gaussian smoothing filter
[34] is applied to the image to minimize noise in edge detection. Then, we ex-
ploit the lack of color saturation of the path itself, switching to HSV space and
extracting the saturation image. Finally, we apply the Canny edge detector [35]
on the saturation image, with a very high hysteresis / stitching threshold and a
very low detection threshold, such that only a few significant edges are detected,
but contain a large number of pixel points. With the edge points corresponding to
either the left or right edges of the path, grouping is straightforward. Further, the
edge points are pruned as necessary to ensure that the start and end points of each
curve are approximately equivalent in the left and right images.

By applying this procedure, we obtain a series of edge points, grouped into
different curves, in both the left and right images. Typical results of this method
are shown in Figure 4.1.

It is important to note that the edge grouping requirements may vary depending
on the robot’s environment and the quantity of curve structures that need to be
mapped. For instance, in the case of this thesis, we are most interested in map-

18

Figure 4.1: Result of Canny detection and edge grouping to extract path edge
curves

ping path and riverine environments, where the edge points only correspond to
a few different curves (the edges of the river or path). In contrast, in an indoor
environment cluttered with objects, it may be necessary to group edge points into
a large number of different structures.

Thus, depending on the requirement, this particular step of the algorithm may
be altered, to use in conjunction with the proposed curve fitting and SLAM algo-
rithms outlined in this chapter and the following chapters.

4.2 Nonlinear model fitting

Once these grouped edge points are obtained, the Levenberg-Marquardt algorithm
[36] is applied to fit the camera projection model to these edge point measure-
ments. With the model described by (3.2) - (3.8), the image measurements are
purely a function of the parameters we attempt to estimate (the planar curve con-
trol points and the relative orientation between the stereo camera pair and the
ground plane). More specifically, we have measurement vector y comprising n
curve points in the left image and m curve points in the right image (grouped into
M different curves), and the parameter vector β:

y = [ul1 , vl1 , ..., uln , vln , ur1 , vr1 , ..., urm , vrm]T

β =
[
p1

T , ..., pM
T , zr, θr, φr

]T
(4.1)

Here, p1, ..., pM represent the control point vectors of each of the M Bézier
curves observed in the image, with co-ordinates defined in the Local Ground
frame. The parameter variable zr is the height of the robot above the ground

19

plane, and θr and φr are the pitch and roll, defined as Euler angles. Then, we
attempt to fit the model y = f (β) described by (3.2) - (3.8).

On each iteration, the planar orientation and the current curve parameters are
used to determine the projected Bézier curves in the left and right images, using
(3.8). The reprojection error for each measured edge pixel is computed as the
distance between the pixel and the nearest point on the projected Bézier curve.
The nearest point can be determined algebraically by setting the derivative of the
distance to zero (see chapter 4.3.1). Then, each iteration k aims to minimize the
total reprojection error, adding update δk to the parameter vector βk:

δk =
(
JTJ + λ diag

(
JTJ

))−1
JT (y − f(βk))

βk+1 = βk + δk (4.2)

The Jacobian J = ∂f(β)
∂β

is the matrix of first-order partial derivatives of the
measurements with respect to the parameters, and will be derived in the next sec-
tion. The parameter λ is a damping parameter that was tuned to optimize the
convergence characteristics of the Levenberg-Marquardt algorithm.

4.3 Jacobian Derivation

Given the measurement vector, y = [ul1 , vl1 , ...uln , vln , ur1 , vr1 , ...urm , vrm]T ,
and the parameter vector β =

[
p1

T , ..., pM
T , z, θ, φ

]T , with model y = f (β),
the Jacobian to be determined is J = ∂f(β)

∂β
.

Every measured point corresponds to a point in the Local Ground frame, which
corresponds to a point on a curve. Suppose a measured point corresponds to curve
γ, with control point vector pγ and coefficient vector αγ . Then, recalling the
stereo camera projection equations defined in (3.8) and the parametrization for

20

cubic Bézier curves, we have the following relations:

xg =
3∑
i=0

(
3

i

)
(1− t)3−iti

pixpiy
0


γ

, t ∈ [0, 1]

xb = Rgb(φ, θ)
−1(xg − tgb(z))

ul =
fu
xb
zb + cy ur =

fu
xb
zb + cy

vl =
fv
xb

(yb +
d

2
) + cx vr =

fv
xb

(yb −
d

2
) + cx (4.3)

Here, xg is a point which, from the edge grouping stage, is known to lie on curve
γ. For explanation of these terms, refer to (3.8).

For any curve k, we can easily transform the control point vector pk to para-
metric polynomial form with coefficient vector αk, and know the Jacobian dαk

dpk

(Section 3.2). Then, the Jacobian of xg with respect to each of the control point
vectors pk can be calculated as follows:

dxg
dpk

=
dxg
dαk

dαk
dpk

(4.4)

dxg
dαk

=




1 t t2 t3 0 0 0 0

0 0 0 0 1 t t2 t3

0 0 0 0 0 0 0 0

 if k = γ

0 otherwise

(4.5)

In other words, the rows of the Jacobian corresponding to a measured point are
only nonzero for the corresponding curve. The value of t used for each measure-
ment will be explained later in this section.

21

Next, the Jacobians of xb with respect to the parameters β are as follows:

dxb
dpk

= Rgb(φ, θ)
−1 dxg
dpk

(4.6)

dxb
dθ

=

 − sin θ 0 − cos θ

cos θ sinφ 0 − sin θ sinφ

cos θ cosφ 0 − sin θ cosφ

[xg − tgb(z)
]

(4.7)

dxb
dφ

=

 0 0 0

sin θ sinφ − sinφ − cos θ cosφ

− sin θ sinφ − cosφ − cos θ sinφ

[xg − tgb(z)
]

(4.8)

dxb
dz

= −Rgb(φ, θ)
−1

0

0

1

 (4.9)

dxb
dβ

=
[
dxb

dp1

dxb

dp2
... dxb

dpq

dxb

dθ
dxb

dφ
dxb

dz

]
(4.10)

The full Jacobian J = ∂f(β)
∂β

can then be computed by using the stereo projection
equations (3.8). The rows of the Jacobian vary depending on whether the edge
point corresponds to the left or right image. For a left image edge point ul =

[ul, vl]
T and right image edge point ur = [ur, vr]

T , the corresponding rows of the
Jacobian can be found with the following relations:

dul
dβ

=
dul
dxb

dxb
dβ

,
dul
dxb

=

 −fuzb
x2b

0
fu
xb

−
fv(yb + d

2
)

x2b

fv
xb

0

 (4.11)

dur
dp

=
dur
dxb

dxb
dβ

,
dur
dxb

=

 −fuzb
x2b

0
fu
xb

−
fv(yb − d

2
)

x2b

fv
xb

0

 (4.12)

One important thing to note is that this Jacobian still depends on the unknown
parameter t through the term dxg

dpj
. To determine this t-value for each row of the

Jacobian (i.e., for each measurement), we need to determine the point on the pro-
jected image curve that is closest to the measured point. In other words, we need
to use the parameter estimates to project the world curve to the left or right image
(depending on the location of the measured point), and the t-value of the measured

22

point is the same as that of the closest curve point.
The process of finding the nearest curve point to an external (measured) point

is detailed in the next section.

4.3.1 Nearest point Calculation for Cubic Bézier Curves

Assume (all in image co-ordinates) that the measured edge point is given by
(um, vm), the closest curve point occurs at t = t∗, and the projected image curve
has control points (u0, v0) ... (u3, v3):[

uc(t) =
∑3

i=0

(
n
i

)
(1− t)n−itiui

vc(t) =
∑3

i=0

(
n
i

)
(1− t)n−itivi

]
, t ∈ [0, 1] (4.13)

The distance between the measured point and the point on a curve is:

s =

√
(uc(t)− um)2 + (vc(t)− vm)2 (4.14)

To find the nearest point, we set the derivative of the distance with respect to t to
zero. Taking the derivative and simplifying the expression, we have the following
polynomial equation in t∗:

5∑
i=0

ci(t
∗)i = 0

c0 = u2(u3 − um) + v2(v3 − vm)

c1 = u2
2 + 2u1(u3 − um) + v2

2 + 2v1(v3 − vm)

c2 = 3(u2u1 + u0(u3 − um) + v2v1 + v0(v3 − vm))

c3 = 2(2u2u0 + u1
2 + 2v2v0 + v1

2)

c4 = 5(u1u0 + v1v0)

c5 = 3
(
u0

2 + v0
2
)

(4.15)

This can be solved using a numerical root finding technique such as Newton’s
method. However, this process needs to be performed for every measured edge
point on every iteration of the curve fitting algorithm. As a result, computational
expense is a necessary consideration. To minimize the computational cost, we ap-
proximate this process as follows. Given a sequence of edge point measurements

23

corresponding to a measured curve, we can “assign” a t-value to each measure-
ment based on its position in the sequence. For example, the first point is assigned
t = 0, the last point has t = 1, and the t-values for all points in between are
distributed evenly. Then, this iterative technique is avoided, and the closest curve
point can be computed directly from the t-value associated with the measured edge
point.

This approximation is accurate under the assumption that the edge points are
evenly distributed (i.e., there are no large gaps), which is already a requirement
for good curve fitting results.

4.3.2 Initial Guess of Parameters

The Levenberg-Marquardt approach, like most other iterative techniques, is sen-
sitive to the initial parameter estimates, so an intelligent starting point must be
selected. Here, our initial guess is obtained by looking at the start and end points
of the measured curves. Since we already ensure that the start and end points
are approximately equivalent in both images, we have an approximate stereo cor-
respondence. Thus, we can triangulate their positions in the world frame using
(3.8), obtaining 2M points on the ground plane (recall that M is the number of
observed curves). The plane of best fit for these points provides an initial estimate
of the roll, pitch and height, and by transforming the points using the determined
angles, we also obtain estimates for the start and end control points of the curve in
the world frame. Linearly interpolating between these points gives us estimates of
the remaining curve control points that are practical for most operating scenarios.

4.3.3 Outlier Rejection

While experiments with the curve fitting approach demonstrate it to be feasible in
determining the camera’s orientation with respect to the ground plane, it is pos-
sible on some frames for the nonlinear optimization to diverge or converge to an
incorrect equilibrium, since the problem is not convex. To ensure that outlying
curve fitting results do not adversely affect the SLAM results, a simple outlier re-
jection technique has been used. At each stereo frame, if the measured parameters
(output of the curve fit) lie more than 3 standard deviations away (in terms of the
measurement covariance) from the current estimate of roll, pitch and height, the

24

frame is discarded and the SLAM algorithm moves to the next frame. Similarly,
if the curve fit has a fitting error over a predefined threshold, the frame is also
discarded.

4.3.4 Summary

By applying this technique on raw edge point measurements (grouped into dif-
ferent curves), the algorithm obtains the optimal estimates for the curve control
points and the out-of-plane pose parameters, minimizing the reprojection error
between the curve model and the measured edge pixels.

The final result is that each stereo frame gives us an absolute measurement of
three of the degrees of freedom and an expression for the curves in the ground
plane.

25

CHAPTER 5

SLAM FORMULATION

This chapter details the SLAM formulation for the proposed algorithm. In the
following sections, the data association technique is first discussed, a necessary
curve splitting algorithm is explained, and then the SLAM equations are derived.

5.1 Curve Data Association

Before deriving the SLAM equations, we first need to consider data association
between measured curves (control points obtained in the curve fitting procedure)
and map curves (landmarks existing in the map).

Specifically, we need to consider that measured curves do not have a one-to-one
correspondence with the map curves. Indeed, the measured curve may correspond
to part of a single map curve, or parts of multiple connected map curves, etc. This
is illustrated in the example of Figure 5.1(a), where the measured curve z matches
two map curves xi and xj . Thus, we need to determine a) the map curve(s) to
which the measured curve corresponds, and b) the start and end points of the
map curve segments to which the measured curve corresponds. In the example
of Figure 5.1(a), this means we need to determine the parameter values ti, tj and
tz. Then, the algorithm can determine whether to add curves, update curves, or
perform both.

To determine these parameter values, we track the endpoints of the existing map
curves (all in the left image frame) using the Lucas-Kanade tracking algorithm
[34]. It is important to stress that the algorithm only needs to track the endpoints
of the map curves (as shown in Figure 5.2); all structural information of the curves
is maintained through the curve parameters, thereby avoiding the drawbacks of
point-based methods outlined earlier.

The procedure for each curve is as follows:

1. The endpoints of the map curve are continuously tracked in all image frames

26

𝒙𝒊𝟏

𝒙𝒊𝟐

𝒙𝒋𝟏

𝒛𝟐

𝒛𝟏

𝒛

𝒙𝒊

𝒙𝒋

𝑡𝑧

𝑡𝑗

𝑡𝑖

𝒙𝒋𝟐

𝒙𝒊𝟏

𝒙𝒊𝟐

𝒙𝒋𝟏

𝒛𝟐

𝒛𝟏

𝒛

𝒙𝒊

𝒙𝒋

𝑡𝑧

𝑡𝑗

𝑡𝑖

𝒙𝒋𝟐

Figure 5.1: Updating map curves (left), and adding new curves to the map (right)
based on a measured curve at one timestep. The measured curve is shown in red,
and the map curves are in blue and black.

(from the point it is first initialized).

2. The measured curve (i.e., the output of the curve fit) is projected back to the
image.

3. Then, tz is the t-value of the point on the projected curve closest to the
tracked endpoint, and can be found using the procedure outlined in chapter
4.3.1.

4. We then specify ti = tj = 1− tz.

While this last step may seem imprecise, it is effective in practice, and, in fact,
naturally regulates the length of each introduced map curve. If we ensure that the
number of edge pixels in each measured curve is reasonably constant (i.e., same
“size” in successive images) then as the map endpoint moves along the measured
curve (Figure 5.2), we observe more of the “new” map curve and less of the pre-
vious map curve. In Figure 5.1, this is equivalent to the measured curve z cor-
responding entirely with xi initially, and then moving gradually to xj . Thus, we
ensure that the t-value changes uniformly as motion occurs, and that new map
curves have approximately similar lengths.

To mitigate the effect of tracking errors, the algorithm compares the motion of
each tracked point with the motion of two other proximal edge points (both lying
on the measured curve). If the difference exceeds a threshold, the data association
is considered a failure, and the measured curve is independently added to the map.

27

Figure 5.2: Early frame (left) and current frame (right), with measured curve
endpoints for each frame in red and map curve endpoints in blue

5.1.1 Curve Splitting Algorithm

Next, before we can derive the observation model and the SLAM algorithm, we
need to develop a technique for updating an entire map curve based on a partial
measurement.

This can be achieved by taking advantage of the De Casteljau algorithm for
recursively evaluating Bézier curves [33]. For any n-degree Bézier curve, this
approach provides a linear relation that can be used to split the curve at any spe-
cific parameter value ts into two n-degree Bézier curves. For a cubic curve, the
algorithm is defined as follows:

1. Start with the 4 Bézier control points {a(0)
0 , a

(1)
0 , a

(2)
0 , a

(3)
0 }, and choose the

split parameter value ts.

2. Divide each segment of the control polygon in the ratio of ts to 1 − ts to
construct the 3 “intermediate” control points {a(0)

1 , a
(1)
1 , a

(2)
1 }.

3. Recurse until the result is a single point; a
(0)
3 .

Figure 5.3 shows this process, and the two dimensional intermediate control
points are denoted as a

(i)
j , where j is the level of recursion and i is the number of

the control point for the intermediate curve.
Thus, by this recursive definition, each control point of the n-degree intermedi-

ate curve is defined as a convex combination of two control points of the (n+ 1)-
degree intermediate curve (Figure 5.3), with the recurrence relation:

a
(i)
j = (1− ts)a(i)

j−1 + tsa
(i+1)
j−1 (5.1)

28

𝒂𝟎
(𝟎)

𝒂𝟑
(𝟎)

𝒂𝟎
(𝟏)

 𝒂𝟎
(𝟐)

𝒂𝟎
(𝟑)

𝒂𝟏
(𝟎)

𝒂𝟏
(𝟏)

𝒂𝟏
(𝟐)

𝒂𝟐
(𝟎)

𝒂𝟐
(𝟏)

Figure 5.3: Recursive definition of Bézier curves

Noticing that the intermediate points also act as control points for specific seg-
ments of the curve, we can use this formulation to split the original Bézier curve
into two curves of the same order, at the point a

(0)
3 . Referring to Figure 5.3, the

control points of the original curve are {a(0)
0 , a

(1)
0 , a

(2)
0 , a

(3)
0 } and the control points

of the split curves are given by {a(0)
0 , a

(0)
1 , a

(0)
2 , a

(0)
3 } and {a(0)

3 , a
(1)
2 , a

(2)
1 , a

(3)
0 }.

Using the notation introduced in chapter 3.2, we can define the control point

vector of the original curve as p` =
[
p
(0)
x , p

(1)
x , p

(2)
x , p

(3)
x , p

(0)
y , p

(1)
y , p

(2)
y , p

(3)
y

]
`

T

,
and the control point vectors of the split curves in the same form as p`1 and p`2 to
refer to the first and second segments respectively. Again following the previously
defined notation, we can refer to each control point as p`

(i) for the original curve,
and p`

(i)
1 and p`

(i)
2 for the split curves.

Then, using (5.1), we get the following relationships:

p
(i)
`1

=
i∑

j=0

(
i

j

)
ts
j(1− ts)i−jp(j)

`

p
(i)
`2

=
n∑
j=i

(
n− i
j − i

)
ts
j−i(1− ts)n−jp(j)

` (5.2)

We can write this in matrix form using lower triangular matrix S1 and upper

29

triangular matrix S2:

S1 : sij =


(
i
j

)
ts
j(1− ts)i−j if j ≤ i

0 if j > i

S2 : sij =


(
n−i
j−i

)
ts
j−i(1− ts)n−j if j ≥ i

0 ifj < i

p`1 =

[
S1 0

0 S1

]
p`

p`2 =

[
S2 0

0 S2

]
p` (5.3)

Thus, importantly, any segment of a Bézier curve can be obtained from the
whole curve by applying a linear transformation to the original control points.
Since the transformation matrices are triangular with non-zero diagonal elements,
they are invertible. Further, they are independent of the control points and are only
a function of the parameter value at the split point, ts.

Given this method for splitting curves, we can easily equate a measured curve
to any combination of existing map curves in order to a) update the existing map,
and b) add new curves to the map. Based on the data association parameters
determined using the procedure in chapter 5.1, it is easy to determine which matrix
to use.

5.2 State Model

The state model is similar to a point-based EKF-SLAM formulation, with the
state vector x containing the robot pose xr and N landmark states xi with i ∈
{1, 2, ..., N}.

x =
[
xr

T , x1
T , ..., xN

T
]T

(5.4)

The robot pose state consists of the vehicle position vector rr = [xr, yr, zr]
T ,

orientation in terms of Euler angles Ψr = [φr, θr, ψr]
T , the linear velocity vr and

angular velocity ωr, all defined with respect to the Earth frame. By using this
parametrization, the process model is purely linear.

30

xr =
[
rr
T , Ψr

T , vr
T , ωr

T
]T

(5.5)

The landmark states x1,x2, ...,xN are the control point vectors of each of the
N planar curves in the Earth frame, with the jth landmark given by control point
vector xj =

[
x(0), x(1), x(2), x(3), y(0), y(1), y(2), y(3)

]
j

T , where
(
x(i), y(i)

)
are

the coordinates of the ith control point.
As in [31], it is assumed that the state is normally distributed, with an estimate

at timestep k of the mean

x̂(k|k) =
[
x̂r(k|k)T , x̂1(k|k)T , ..., x̂N(k|k)T

]T
(5.6)

and covariance matrix

P(k|k) =


Pr,r(k|k) Pr,1(k|k) · · · Pr,N(k|k)

P1,r(k|k) P1,1(k|k) · · · P1,N(k|k)
...

...
PN,r(k|k) PN,1(k|k) · · · PN,N(k|k)

 (5.7)

Here, the submatrices Pr,r(k|k), Pr,i(k|k), and Pi,i(k|k) (with i ∈ {1, 2, ..., N})
are the cross-covariances between the robot pose (subscript r) and the N curves
(subscripts 1, 2, ..., N).

5.3 Vehicle Process Model

For the prediction step, a kinematic motion model is used. We model the unknown
linear and angular accelerations as zero-mean Gaussian vectors a ∼ N (0,Σa)

and α ∼ N (0,Σα) respectively, both in the Earth frame, such that at timestep k,
the linear and angular velocities experience a change of approximately V(k) =

a∆t and Ω(k) = α∆t. We get the following vehicle process model:

31

xr(k + 1) =


rr(k + 1)

Ψr(k + 1)

vr(k + 1)

ωr(k + 1)



= xr(k) +


(vr(k) + V(k)) ∆t

(ωr(k) + Ω(k)) ∆t

V(k)

Ω(k)

 (5.8)

The tradeoff for linearity in the process model is the fact that the process noise
covariance matrices Σa and Σα are not diagonal (indeed, they are diagonal in
the body frame). In other words, the angular and linear accelerations are only
independent in the body frame, and the associated diagonal covariance matrix
will require a basis change from the Body frame to the Earth frame to obtain Σa

and Σα.

5.4 Observation Model

The state vector, comprising the pose state and all of the landmark states, is:

x =
[
xTr ΨT

r vr
T ωr

T x1
T ... xN

T
]T

(5.9)

The measurement vector, containing the out-of-plane pose measurement {φr, θr, ψr}
and the M curve measurements in the Local ground frame, is:

z =
[
φr θr zr z1

T ... zM
T
]T

(5.10)

These are measured from the curve fitting process, outlined in Chapter 4.
Since the out-of-plane pose is measured directly, the update step for these vari-

ables is straightforward. Nonetheless, the relationship between the existing curve
states and the measurements needs to be determined.

32

5.4.1 Updating Existing Curve States

Consider the case in Figure 5.1(a) where a measured curve z corresponds as shown
to two existing map curves xi and xj .

With the ti, tj and tz values representing the correspondences (obtained from
the data association step), we can directly derive the observation model by split-
ting the curves with de Casteljau’s algorithm (Section 5.1.1). First, we split the
original measurement into two (z1 and z2), and then equate these two with the
appropriate segments of the map curves:

z1 = xi2 =

[
S2(ti) 0

0 S2(ti)

]
xi

z2 = xj1 =

[
S1(tj) 0

0 S1(tj)

]
xj

(5.11)

Here, S2(ti) and S1(tj) are the linear transformations required to split the curves
at parameter values ti and tj (defined in Section 5.1.1), and need to be applied
separately to both the x and the y co-ordinates of the map curves.

In the general case, we have a series of split measurements each corresponding
to a segment of a different curve. To handle this case, let each split measurement
zi correspond to existing map curve i with associated split matrix Si determined
from the t-value at the data association step. Then, we can generalize this to:

zi =

[
Si 0

0 Si

]
xi (5.12)

If we consider that the measurement is made in the vehicle body frame, and
the vehicle has planar pose of {x, y, ψ}, then the observation equation in the form
z = h (x) becomes the following:

zi = Reg(ψr)
−1

([
Si 0

0 Si

]
xi − teg(xr, yr)

)
(5.13)

where Reg(ψr) and teg(xr, yr) are the rotation matrix and translation vector trans-
forming the curve parameters between the Local Ground frame and the Earth

33

frame.
Since we have 4 different x and y co-ordinates (corresponding to the control

points), the expressions for the rotation and translation matrices vary slightly from
the well-known matrix forms. If we define the column vector U = [1, 1, 1, 1]T

and utilize the 4× 4 identity matrix I4, we have:

Reg =

[
I4 cosψr −I4 sinψr

I4 sinψr I4 cosψr

]
, teg =

[
Uxr

Uyr

]
(5.14)

The standard EKF update equations are then applied.

5.4.2 Adding New States

In the case where map curve xj does not yet exist (Figure 5.1(b)), we can insert the
curve into the state vector and augment the covariance matrix with the necessary
cross-covariances PN+1,N+1, Pr,N+1, and Pi,N+1:

xN+1 = g (x, z)

=

[
S−1 0

0 S−1

]
[Regz2 + teg]

PN+1,N+1 = GxPGT
x + GzRGT

z

Pr,N+1 = PT
N+1,r = Pr,rG

T
x

Pi,N+1 = PT
N+1,i = Pr,iG

T
x (5.15)

where R is the measurement covariance matrix, S is the split matrix associated
with the newly added curve, and Gx = ∂g

∂x
and Gz = ∂g

∂z
are the Jacobians of

g (x, z) with respect to the state and measurement respectively.

5.5 Extended Kalman Filtering

Given the process and observation models, the standard EKF equations follow,
outlined in detail in the following sections.

34

5.5.1 Prediction stage

In the prediction stage at timestep k+1, the estimated state and covariance matrix
are updated using the Jacobian F of the process model f(x):

x̂(k + 1|k) = f (x̂(k|k)) (5.16)

Pr,r(k + 1|k) = FPr,r(k|k)FT + Q(k) (5.17)

Pr,i(k + 1|k) = FPr,i(k|k) (5.18)

Pi,r(k + 1|k) = Pi,r(k|k)FT (5.19)

Pi,i(k + 1|k) = Pi,i(k|k) (5.20)

The Jacobian F is found by linearizing the process model about the current
operating point (i.e., the current pose estimate). Since only the robot pose terms
are dynamic (while all landmarks are stationary), F is defined here as the Jacobian
of robot pose states. Specifically:

F =
dxr(k + 1)

dxr(k)
(5.21)

=


drr(k+1)
drr(k)

drr(k+1)
dΨr(k)

drr(k+1)
dvr(k)

drr(k+1)
dωr(k)

dΨr(k+1)
drr(k)

dΨr(k+1)
dΨr(k)

dΨr(k+1)
dvr(k)

dΨr(k+1)
dωr(k)

dvr(k+1)
dvr(k)

dvr(k+1)
dΨr(k)

dvr(k+1)
dvr(k)

dvr(k+1)
dωr(k)

dωr(k+1)
drr(k)

dωr(k+1)
dΨr(k)

dωr(k+1)
dvr(k)

dωr(k+1)
dωr(k)

 (5.22)

=


I 0 I∆t 0

0 I 0 I∆t

0 0 I 0

0 0 0 I

 (5.23)

(5.24)

The matrix Q(k) is the covariance of the process noise, which, from the process
model, has the following form:

Q(k) = FQFT∆t =


∆t3Σa 0 ∆t2Σa 0

0 ∆t3Σα 0 ∆t2Σα

∆t2Σa 0 ∆tΣa 0

0 ∆t2Σα 0 ∆tΣα

 (5.25)

35

Recall that all pose variables are defined in the Earth frame, while we assume
that the error covariances are independent only in the body frame. This means
that the covariance matrices Σa and Σα are not diagonal. Indeed, we define two
corresponding diagonal covariance matrices in the Body frame, Σa

′ and Σα
′, and

apply a change of basis between the Body and Earth frames using the rotation
matrix Reb:

Σa = RebΣa
′RT

eb

Σa = RebΣa
′RT

eb

(5.26)

5.5.2 Update stage

In the update stage at timestep k + 1, we have the measurement vector z(k) =[
z1
T , ..., zM

T
]T containing the (partial) measurement of M map curves, and the

estimated state and covariance matrix are updated using the Jacobian H of the
process model h(x):

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k) [z(k)− h(x̂(k + 1|k))] (5.27)

S(k) = HP(k + 1|k)HT + R(k) (5.28)

K(k) = P(k + 1|k)HTS(k)−1 (5.29)

P(k + 1|k + 1) = P(k + 1|k)−K(k)S(k)K(k) (5.30)

Here, R(k) is the covariance matrix of the measurement noise, which we also
assume is zero except for along the diagonals.

We can derive the observation Jacobian as follows:

H =


dz1
dxr

dz1
dx1

· · · dz1
dxN

dz2
dxr

dz2
dx1

· · · dz2
dxN...

...
dzM
dxr

dzM
dx1

· · · dzM
dxN

 (5.31)

The rotation and transformation matrices as used in the SLAM observation
equations are given by:

36

Rge =

[
I4 cosψr I4 sinψr

−I4 sinψr I4 cosψr

]
, tge =

[
Uxr

Uyr

]
(5.32)

Since each (split) measurement corresponds one to one with a segment from one
single curve, most of the partial derivatives with respect to state curves are zero.
Suppose that measurement zi corresponds to state curve xk with curve splitting
matrix S. Then, for each measured curve zi we have:

dzi
dxr

=

[
−U cosψ

U sinψ

]
,

dzi
dyr

=

[
−U sinψ

−U cosψ

]
(5.33)

dzi
dψr

=

[
−I4 sinψr I4 cosψr

−I4 cosψr −I4 sinψr

][[
S 0

0 S

]
xk − xr

]
(5.34)

dφr
dφr

= 1,
dθr
dθr

= 1,
dψr
dψr

= 1 (5.35)

dzi
dxr

=
[
dzi
dxr

dzi
dyr

dzi
dψr

dzi
dvr

dzi
dωr

]
(5.36)

dzi
dxk

= Rge

[
S 0

0 S

]
(5.37)

dzi
dxj

= 0, j 6= k (5.38)

All other terms in the Jacobian are zero. It is important to note that since the
curve measurements are in the Local Ground frame, they are independent of the
out-of-plane pose variables.

37

CHAPTER 6

RESULTS

This chapter presents the results obtained using the proposed algorithm. Vision-
based results are presented in order to demonstrate the effectiveness of the algo-
rithm in real environments, and Monte Carlo simulation results are used to analyze
the accuracy and consistency of the SLAM algorithm.

6.1 Vision Results

To demonstrate effectiveness with real data, three paths, with lengths ranging up
to 100m, were mapped using the algorithm. Vision data was obtained using a
stereo camera rig with a fixed baseline of 55cm. The estimated maps are shown
in Figure 6.1 overlaid on Google satellite imagery. Over these distances, the drift
of the maps and trajectories are on the order of 2-5m. The second and third paths
are particularly challenging due to the lack of clear path edges; nonetheless, the
algorithm is able to yield a reasonable map. In the second example, the algorithm
also deals with a number of successive frames without a good curve measurement,
where the pose is updated based on the prediction alone. Here, the trajectory is
discontinuous when it finally receives an update, but the map still remains contin-
uous (Figure 6.1(b)).

Such environments could not be mapped with laser ranging sensors, since there
would be few laser returns from path edges. With the path in Figure 6.1(b) par-
tially obstructed by overhanging trees, even satellite imagery cannot produce ad-
equate detail. More significantly, the demonstrated level of accuracy is achieved
with few states, only using curve structures that are integral to the mapping re-
quirements. Ultimately, navigation in path environments is possible without uti-
lizing point features, with the edges of the path alone.

The results demonstrate that a) the curve fitting algorithm can extract real world
curves from edge points in a stereo image pair, and b) the EKF-based CurveSLAM

38

(a) Mapping of a path near Talbot Laboratory,
UIUC, Urbana, IL (30m)

(b) More challenging path in Crystal Lake Park, Urbana, IL (50m). The algorithm recovers from
a series of frames without good path curve measurements (discontinuity shown)

(c) Longer path in Crystal Lake Park, Urbana, IL (100m).

Figure 6.1: Vision results on three paths, with varying length and difficulty

39

formulation can process these measurements into a cumulative pose and map es-
timate. The algorithm is fully autonomous, and currently operates at 5-10 Hz on
a laptop with 2.3 GHz Pentium Dual-core processor; this could be improved with
adequate code optimization.

6.2 Simulation Results

To examine the effectiveness of the CurveSLAM algorithm, simulations were per-
formed using three sample environments. Two main sources of error were incor-
porated as additive Gaussian noise: error in the detected edge pixels with standard
deviation σp = 2 pixels, and error in the estimated data association parameter (t-
value) of standard deviation σda = 0.1. These are both exaggerated estimates of
the error encountered in real environments: the simulated noisy edge points are
scattered more than edge points in real images (Figure 6.2), while an error of 0.1
in the matching parameter means the curve matching is incorrect by a tenth of the
curve length.

Figure 6.2: Typical edge pixels in real environment (left), and typical edge pixels
in simulation (right)

In each environment, the vehicle travelled two loops (for a total distance of 80m,
120m, and 200m respectively), and loop closure was formulated as the solution to
the constrained optimization problem:

min
xc

f(xc) = (xc − xu)
T P−1 (xc − xu)

subject to h(xc) = 0 (6.1)

Here, the unconstrained state is given by xu, while the constrained state (following

40

loop closure) is given by xc. The constraint equations h(x) = 0 specify the
completion of the loop (i.e., xr = 0, yr = 0, and ψr = 0). The solution approach
for this problem is found in [37].

The constructed map, as well as the vehicle localization errors, are shown in
Figures 6.3, 6.4, and 6.5.

The mapping results demonstrate the effectiveness of CurveSLAM. While some
drift is to be expected, the resulting estimation of the maps are reasonably accu-
rate. The largest localization errors arise in the planar variables (x, y, and ψ),
which can be expected, since the remaining pose variables are measured directly
from the curve fitting process. The estimated maps are nearly as accurate as those
obtained in simulation by Pedraza et al. [31]. Notably, however, our simulations
consider data association error as well, and do not utilize vehicle odometry, with
the linear and angular velocities also estimated within the EKF. It must also be
noted that while laser range finders are renown for high levels of accuracy, the
accuracy of vision data tends to be lower: this is a compromise for the portability
and richness of information that a camera can provide, and one of the challenges
of Visual SLAM. Nonetheless, the simulation results are comparable to [31].

6.2.1 Consistency Analysis

EKF-SLAM consistency has been studied extensively in the literature [38][39][40],
with various suggestions to improve filter consistency.

When the true vehicle state is known (as is the case in simulation), the well
known Normalised Estimation Error Squared (NEES) can be used to character-
ize filter performance and consistency. It is the error squared normalized by the
covariance, given by:

εk = (x(k|k)− x̂(k|k))T P(k|k)−1 (x(k|k)− x̂(k|k)) (6.2)

Under the hypothesis that the filter is consistent and approximately Linear-
Gaussian (an assumption for all EKF-based SLAM algorithms), εk follows the
distribution of the sum-square of dim (xk) standard random variables, which is a
χ2 distribution, with the same number of degrees of freedom as the vehicle, which
is, in our case, 6DOF. Then, by running N Monte Carlo runs, and as N approaches
infinity, the expected value of the NEES is E [εk] = dim (x(k)) = 6 [38]. With
50 Monte Carlo runs, we have a 95% confidence interval of [5.08, 7.00]. That is,

41

we can be 95% certain that the filter behaves as a consistent Linear-Gaussian es-
timator if the average value of the NEES over 50 runs remains within this range
for the whole simulation duration. If the NEES is below this interval, the estimate
of the covariance is conservative, while if the NEES is above this interval, the
covariance estimate is optimistic (i.e., underestimated).

Thus, we set up our Monte Carlo runs as follows: the robot travels through
the three simulated environments, and the NEES is recorded over 50 Monte Carlo
runs. For each run, the algorithm is initialized with a different seed for the Ran-
dom Number Generator, thereby sampling the entire error space as the number of
runs approaches infinity. The plots are shown in Figure 6.6.

The NEES plots in Figure 6.6 illustrate the consistency properties of the CurveS-
LAM algorithm. A higher NEES value is undesirable, since it indicates an opti-
mistic covariance estimate and filter inconsistency. There are no obvious symp-
toms of this in the map, such as divergence or “jumps” in the vehicle trajectory
estimate, but with a gradually inconsistent filter, this is a possibility over much
larger distances, a potential limitation of any EKF-based approach.

As indicated by the initial low NEES values, the covariance estimates begin
conservatively, and then remain in the vicinity of the 95% confidence interval. A
spike occurs as the vehicle commences its second loop, but the NEES quickly
reduces back to reasonable levels. Indeed, the only extended period for which the
covariance estimate is optimistic (i.e., the NEES is high) is during the vehicle’s
second loop, when it revisits areas it has previously observed. These consistency
results are an improvement over those of Pedraza et al. [31], in terms of the peak
NEES value and the duration of filter inconsistency. Particularly, it takes longer
before the NEES remains beyond the 95% confidence interval, and the peak NEES
is at least an order of magnitude lower.

42

−5 0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

20

x (m)

y
(m

)

Estimated Map

True Map
Estimated Map

0 200 400 600 800 1000
−5

−4

−3

−2

−1

0

1

2

3

4

5
Position errors (m)

X
Y
Z

0 200 400 600 800 1000
−50

−40

−30

−20

−10

0

10

20

30

40

50
Orientation errors (deg)

φ
θ
ψ

Figure 6.3: Simulation results for map 1: estimated and true map (top), position
error (center), and orientation error (bottom).

43

−10 0 10 20 30 40 50

−20

−10

0

10

20

30

40

x (m)

y
(m

)

Estimated Map

True Map
Estimated Map

0 200 400 600 800
−5

−4

−3

−2

−1

0

1

2

3

4

5
Position errors (m)

X
Y
Z

0 200 400 600 800
−50

−40

−30

−20

−10

0

10

20

30

40

50
Orientation errors (deg)

φ
θ
ψ

Figure 6.4: Simulation results for map 2: estimated and true map (top), position
error (center), and orientation error (bottom).

44

0 20 40 60 80
−20

−10

0

10

20

30

40

x (m)

y
(m

)

Estimated Map

True Map
Estimated Map

0 200 400 600 800 1000 1200
−10

−8

−6

−4

−2

0

2

4

6

8

10
Position errors (m)

X
Y
Z

0 200 400 600 800 1000 1200
−50

−40

−30

−20

−10

0

10

20

30

40

50
Orientation errors (deg)

φ
θ
ψ

Figure 6.5: Simulation results for map 3: estimated and true map (top), position
error (center), and orientation error (bottom).

45

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100
NEES

0 200 400 600 800
0

10

20

30

40

50

60

70

80

90

100
NEES

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100
NEES

Figure 6.6: Monte Carlo consistency results for maps 1 to 3 (top to bottom),
showing the average NEES over 50 runs

46

CHAPTER 7

CONCLUSIONS

This thesis has presented a technique to incorporate higher level curve structures
into visual SLAM. Simulation results suggest that the CurveSLAM formulation
can produce accurate mapping results, while experimental results demonstrate the
effectiveness of the curve fitting and CurveSLAM algorithms with real data. In
both cases, the proposed algorithm can produce structured, uncluttered maps and
provide good navigation results with a much smaller state space than most point-
based visual SLAM techniques. Further, the algorithm can be useful in areas in
which laser range finding techniques will fail (for example, mapping the edges
of a path). Monte Carlo simulation results show that the proposed technique can
maintain consistency, offering an improvement over previous work.

Nonetheless, further work is needed to ensure that the method is effective in
producing accurate and consistent estimates over large distances.

7.1 Future Work

Current work is focused on obtaining consistent mapping results over larger dis-
tances and in a range of environments. Future tasks include (but are not limited
to) the following:

1. Replacing the iterative curve fitting technique with an analytical approach

Previous work in curve-based reconstruction offers analytical solutions for
algebraic curves, but these can be difficult to utilize computationally in the
proposed SLAM framework. To our best knowledge, there is no existing
analytical technique for stereo projective reconstruction of Bézier curves,
and such a method would be ideal for this algorithm.

2. Extending the algorithm to admit non-planar curves

47

Our experiments demonstrated that the assumption of ground planarity is
reasonable, and that the proposed algorithm is even able to provide map-
ping and localization accuracy in environments without a precisely planar
ground. Nonetheless, there is some benefit to extending this approach to
non-planar curves. Firstly, by allowing the use of curves outside the ground
region, other significant structures can be mapped (eg. trees). Secondly, this
allows for additional observability in the motion of the vehicle, and allow
for reasonable estimates even when the ground plane is not in view.

3. Improvement of algorithm consistency

This may be achieved using submap techniques or utilizing techniques high-
lighted in the SLAM consistency literature, such as by using the First Ever
Jacobians (FEJ) method [39], or by utilizing bearing only measurements
[40]. Alternatively, another option would be to modify the SLAM algorithm
to better account for the nonlinear observation and process model (such as
using an estimator based on the FastSLAM algorithm [41]).

4. Application to Path Planning and Control

The mapping and navigation results shown would be quite useful when de-
veloping motion planning and control algorithms. With the boundaries of
the path continually maintained by the SLAM algorithm, a novel planning
/ control algorithm could be used to take into account this additional useful
information.

48

REFERENCES

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and mapping
(SLAM): Part I the essential algorithms,” Robotics & Automation Magazine,
vol. 13, no. 99, pp. 80–88, 2006.

[2] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): Part II,” Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–
117, 2006.

[3] A. J. Davison, “Real-time simultaneous localization and mapping with a sin-
gle camera,” in Proceedings of the IEEE International Conference on Com-
puter Vision, 2003, pp. 1403–1410.

[4] K. Celik, S.-J. Chung, and A. Somani, “Mono-vision corner SLAM for in-
door navigation,” in Proceedings of the IEEE International Conference on
Electro/Information Technology, 2008, pp. 343–348.

[5] K. Celik, S.-J. Chung, M. Clausman, and A. Somani, “Monocular vision
SLAM for indoor aerial vehicles,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2009, pp. 1566–1573.

[6] J. Yang, D. Rao, S. Chung, and S. Hutchinson, “Monocular vision based
navigation in gps denied riverine environments,” in Proceedings of the AIAA
Infotech at Aerospace Conference. AIAA-2011-1403.

[7] M. Tomono, “Robust 3d SLAM with a stereo camera based on an edge-
point icp algorithm,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2009, pp. 4306–4311.

[8] J. Civera, A. Davison, and J. Montiel, “Inverse depth parametrization for
monocular SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, 2008.

[9] L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D. Tardos, “Mapping
large loops with a single handheld camera,” in Proceedings of Robotics: Sci-
ence and Systems, 2007.

[10] C. Estrada, J. Neira, and J. D. Tardos, “Hierarchical SLAM: Realtime ac-
curate mapping of large environments,” IEEE Transactions on Robotics,
vol. 21, no. 4, pp. 588–596, 2005.

49

[11] L. Paz, P. Piniés, J. Tardós, and J. Neira, “Large-scale 6-DOF SLAM with
stereo-in-hand,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 946–957,
2008.

[12] J. Sola, A. Monin, and M. Devy, “BiCamSLAM: Two times mono is
more than stereo,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2007, pp. 4795–4800.

[13] F. Alcantarilla, P., M. Bergasa, L., and F. Dellaert, “Visual odometry priors
for robust EKF-SLAM,” in Proceedings of the IEEE Conference on Robotics
and Automation, 2010, pp. 3501–3506.

[14] K. Konolige and M. Agrawal, “FrameSLAM: From bundle adjustment to
real-time visual mapping,” IEEE Transactions on Robotics, vol. 24, no. 5,
pp. 1066–1077, 2008.

[15] J. Civera, O. Grasa, A. Davison, and J. Montiel, “1-point RANSAC for EKF-
based structure from motion,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009, pp. 3498–3504.

[16] V. Nguyen, A. Harati, and R. Siegwart, “A lightweight SLAM algorithm
using orthogonal planes for indoor mobile robotics,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007, pp. 658–663.

[17] A. Gee, D. Chekhlov, A. Calway, and W. Mayol-Cuevas, “Discovering
higher level structure in visual SLAM,” IEEE Transactions on Robotics,
vol. 24, no. 5, pp. 980–990, 2008.

[18] J. Sola, T. Vidal-Calleja, and M. Devy, “Undelayed initialization of line seg-
ments in monocular SLAM,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009, pp. 1553–1558.

[19] T. Lemaire and S. Lacroix, “Monocular-vision based SLAM using line seg-
ments,” in Proceedings of the IEEE International Conference on Robotics
and Automation, 2007, pp. 2791–2796.

[20] G. Zhang and H. Suh, I., “SoF-SLAM: Segments-on-floor-based monocu-
lar SLAM,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010, pp. 2083–2088.

[21] Y. Lee and J. Song, “Visual SLAM in indoor environments using au-
tonomous detection and registration of objects,” Multisensor Fusion and In-
tegration for Intelligent Systems, pp. 301–314, 2009.

[22] S. Ahn, M. Choi, J. Choi, and W. Chung, “Data association using visual
object recognition for EKF-SLAM in home environment,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems,
2006, pp. 2588–2594.

50

[23] M. An and C. Lee, “Stereo vision based on algebraic curves,” in Proceedings
of the 13th International Conference on Pattern Recognition, vol. 1, 1996,
pp. 476–482.

[24] J. Kaminski and A. Shashua, “Multiple view geometry of general algebraic
curves,” International Journal of Computer Vision, vol. 56, no. 3, pp. 195–
219, 2004.

[25] C. Schmid and A. Zisserman, “The geometry and matching of lines and
curves over multiple views,” International Journal of Computer Vision,
vol. 40, no. 3, pp. 199–233, 2000.

[26] Y. Xiao and Y. Li, “Optimized stereo reconstruction of free-form space
curves based on a nonuniform rational b-spline model,” Journal of the Opti-
cal Society America A, vol. 22, no. 9, pp. 1746–1762, 2005.

[27] F. Kahl and J. August, “Multiview reconstruction of space curves,” in Pro-
ceedings of the IEEE International Conference on Computer Vision, 2003,
pp. 1017–1024.

[28] R. Fabbri and B. Kimia, “3D curve sketch: Flexible curve-based stereo re-
construction and calibration,” in Proceedings of the IEEE International Con-
ference on Computer Vision and Pattern Recognition, 2010, pp. 1538–1545.

[29] A. Huang, S. Teller et al., “Probabilistic lane estimation using basis curves,”
in Proceedings of Robotics: Science and Systems (RSS), 2010.

[30] L. Pedraza, G. Dissanayake, J. Miró, D. Rodriguez-Losada, and F. Matia,
“BS-SLAM: Shaping the world,” in Proceedings of Robotics: Science and
Systems, 2007.

[31] L. Pedraza, D. Rodriguez-Losada, F. Matı́a, G. Dissanayake, and J. Miró,
“Extending the limits of feature-based SLAM with B-splines,” IEEE Trans-
actions on Robotics, vol. 25, no. 2, pp. 353–366, 2009.

[32] M. Liu, S. Huang, G. Dissanayake, and S. Kodagoda, “Towards a consistent
SLAM algorithm using B-splines to represent environments,” in Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2010, pp. 2065–2070.

[33] L. Piegl and W. Tiller, The NURBS Book. Springer-Verlag, 1997.

[34] D. Forsyth and J. Ponce, Computer vision: a modern approach. Prentice
Hall Professional Technical Reference, 2002.

[35] J. Canny, “A computational approach to edge detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, no. 6, pp. 679–698, 1986.

51

[36] W. Press, B. Flannery, S. Teukolsky, W. Vetterling et al., Numerical recipes.
Cambridge University Press, 2007, vol. 547.

[37] C. Estrada, J. Neira, and J. Tardós, “Hierarchical SLAM: Real-time accurate
mapping of large environments,” IEEE Transactions on Robotics, vol. 21,
no. 4, pp. 588–596, 2005.

[38] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of
the EKF-SLAM algorithm,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp. 3562–3568.

[39] G. Huang, A. Mourikis, and S. Roumeliotis, “Analysis and improvement of
the consistency of extended kalman filter based SLAM,” in Proceedings of
the IEEE International Conference on Robotics and Automation, 2008, pp.
473–479.

[40] A. Tamjidi, H. Taghirad, and A. Aghamohammadi, “On the consistency
of EKF-SLAM: Focusing on the observation models,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems,
2009, pp. 2083–2088.

[41] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A fac-
tored solution to the simultaneous localization and mapping problem,” in
Proceedings of the 18th National Conference on Artificial Intelligence, 2002,
pp. 593–598.

52

